博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
OK6410A 开发板 (八) 34 linux-5.11 OK6410A 内存管理第二阶段
阅读量:4285 次
发布时间:2019-05-27

本文共 10792 字,大约阅读时间需要 35 分钟。

B __turn_mmu_on符号 - setup_arch->paging_init->bootmem_init->memblock_allow_resize返回----此时memblock初始化完成,开启了基于虚拟内时代的 memblock内存管理器时代

流程

__turn_mmu_on	mcr p15, 0, r0, c1, c0, 0       @ write control reg // 内存管理相关1	// 上句执行之后,mmu开启	ret r3 // 调用到 __mmap_switched__mmap_switched	adr r4, __mmap_switched_data					// 内存管理相关2	...	ldmia   r4!, {
r0, r1, sp} ... bl __memset // 内存管理相关3 ldmia r4, {
r0, r1, r2, r3} ... b start_kernel // 内存管理相关4start_kernel->setup_arch setup_processor // 内存管理相关5 setup_machine_tags // 根据 board id 匹配 mdesc // parse 所有的 atags // 对于 MEM, 调用 parse_tag_mem32 初始化 memblock.memory.regions // 内存管理相关6 early_fixmap_init // 建立了一个映射的框架,具体的物理地址和虚拟地址的映射没有去填充 // 内存管理相关7 early_ioremap_init // 内存管理相关8 // 为 parse_early_param 做准备 // 建立 slot_vir // 没有消费者 // 在 OK6410a-linux-5.11 中 没有 early_ioremap_init parse_early_param // parse ... // earlycon // 没有利用 early_ioremap_init 创建的 slot_vir // 在 early_fixmap_init 创建的框架中 填充映射 early_mm_init // 内存管理相关9 // [10:14:27]Memory policy: Data cache writeback setup_dma_zone // 内存管理相关10 adjust_lowmem_bounds // 内存管理相关11 // 调整 memblock.current_limit 的值 arm_memblock_init // 内存管理相关12 // 初始化 memblock.reserved.regions adjust_lowmem_bounds // 内存管理相关13 // 调整 memblock.current_limit 的值 early_ioremap_reset // 内存管理相关14 early_ioremap_shutdown after_paging_init = 1; paging_init prepare_page_table // 内存管理相关15 // 在 页表地址 处 写入 0 map_lowmem // 内存管理相关16 // 映射3组 memblock_set_current_limit // 内存管理相关17 dma_contiguous_remap // 内存管理相关18 early_fixmap_shutdown // 内存管理相关19 pmd_clear(fixmap_pmd(va)); devicemaps_init // 内存管理相关20 // 映射 14组 kmap_init // 内存管理相关21 tcm_init // 内存管理相关22 // 映射 2组 top_pmd = pmd_off_k(0xffff0000); zero_page = early_alloc(PAGE_SIZE); // 内存管理相关23 // 第一次使用 memblock 内存管理器的 内存申请API bootmem_init memblock_allow_resize // 内存管理相关24 // 到此为止,还没出现 struct page.memblock 时代 物理内存和虚拟内存是怎么管控的 1. 页表(物理地址到虚拟地址的映射) // 对应下面的 early map 类 和 map 类 2. 按区域 注册物理内存到 memblock 内存管理器中的 memblock 变量 // 对应下面的 memblock 类buddy 时代 物理内存和虚拟内存是怎么管控的 1. 页表(物理地址到虚拟地址的映射) 2. 按物理页 注册物理内存到 buddy 内存管理器中的 struct pagememblock 切换 到 buddy , 只需要做 1. 不需要做页表的映射(因为memblock时代,已经做完了,buddy直接用就行了) 2. 将 注册到memblock内存管理器memblock变量中 的 物理页 注册到 buddy内存管理器中的struct page
  • 内存管理相关1
__turn_mmu_on 写 cp15 寄存器write control reg	// 开MMU	// 此语句一开始执行,就代表MMU开启了	// 下一句就是 MMU开启后的访问内存流程
  • 内存管理相关2
ldmia   r4!, {
r0, r1, sp} 将 __bss_start 放入 r0 , 该符号为连接符号,在 System.map 查到地址 将 __bss_stop 放入 r1 为 .bss 段 清0 做准备 将 init_thread_union + THREAD_START_SP 放入 sp 设置 栈(.stack)
  • 内存管理相关3
bl  __memset	清0 .bss 段
  • 内存管理相关4
这里 与 内存管理无关只是 解释 一下 在这个 命令运行的时候, 内存 的布局看的出来,所有的 内存布局 都在 Image二进制文件 里面	.code 	是 Image 里面的 _stext	 		-  _etext	.rodata	是 Image 里面的 __start_rodata	-  __end_rodata	.data 	是 Image 里面的 _sdata			-  _edata	.bss 	是 Image 里面的 __bss_start 		-  __bss_stop	.stack  是 Image 里面的 init_task + 8K - 8 的位置		// arch/arm/include/asm/thread_info.h		// https://www.zhihu.com/question/24811279				Image 虚拟地址 : 0xC0008000 - 0xC088E547 8.6MB								_stext			_etext		.code		: 	c0100000 	- 	c0600000								__start_rodata	__end_rodata		.rodata		: 	c0600000 	- 	c06b6000								_sdata			_edata		.data			c0800000 	- 	c088e548								__bss_start 	__bss_stop		.bss		: 	c088e548 	- 	c08c413c									init_thread_union 		init_thread_union + THREAD_START_SP		.stack		: 	C0800000	- 	C0801FF8				.heap		: 	null
  • 内存管理相关5
[10:14:27]CPU: ARMv6-compatible processor [410fb766] revision 6 (ARMv7), cr=00c5387d[10:14:27]CPU: PIPT / VIPT nonaliasing data cache, VIPT nonaliasing instruction cachesetup_processor	struct proc_info_list *list = lookup_processor(midr); // __v6_proc_info	cpu_cache = *list->cache; // v6_cache_fns

  • 之后的 内存管理相关分类
memblock 类	setup_machine_tags		parse_tag_mem32 	adjust_lowmem_bounds	arm_memblock_init		memblock_allow_resize	zero_page = early_alloc(PAGE_SIZE);early map 类 (为 parse_early_param 做准备的映射)	early_fixmap_init		// 查看提交记录 a5f4c561b3b19a9bc43a81da6382b0098ebbc1fb	early_ioremap_init	parse_early_param	early_ioremap_reset	early_fixmap_shutdown		// 查看 提交记录 a5f4c561b3b19a9bc43a81da6382b0098ebbc1fbmap 类(为 linux 运行时 做准备的映射) // 做页表初始化 , 不是 做page初始化	early_mm_init	prepare_page_table	map_lowmem		dma_contiguous_remap	devicemaps_init	kmap_init	tcm_init

memblock 类

填充 memblock 全局变量  的各个成员memblock_add 		填充 	memblock.memorymemblock_reserve	填充 	memblock.reserved
  • setup_machine_tags
parse_tag_mem32 调用 memblock_add 填充 memblock.memory
  • adjust_lowmem_bounds
调整 memblock.current_limit 的值根据 什么调整  TODO
  • arm_memblock_init
调用 memblock_reserve	填充 	memblock.reserved填充完毕, memblock.reserved 中有	1. kernel	2. 页表(50004000-50008000)	3. dma/cma 等
  • memblock_allow_resize
memblock_can_resize = 1;//
  • zero_page = early_alloc(PAGE_SIZE);
第一次使用 memblock 内存管理器的 内存申请API

early map 类

  • 内存管理相关7 early_fixmap_init
early_fixmap_init 	pmd = fixmap_pmd(FIXADDR_TOP); 		// FIXADDR_TOP : FFEF F000		// pmd : c0007ff8	pmd_populate_kernel(&init_mm, pmd, bm_pte);		// 以 pmd  	  变量的值 为 addr		// 以 bm_pte  变量的值 为 value		// 在 addr 处 写入 value		// 其实写了 两个 pmd		// 一个是  addr : c0007ff8 , value : 50728811		// 一个是  addr : c0007ffc , value : 50728c11		pte_offset_fixmap = pte_offset_early_fixmap;		// &bm_pte[pte_index(addr)];early_fixmap_init  的过程是建立 一级页表	// 这样子 二级页表的位置是确定的,在 bm_pte 	 地址开始的 1024字节,256项	// 消费者 通过 填充二级页表来做映射	// 二级页表的内容根据 做的映射关系而变化	// 1.二级页表的地址(pte)是固定的,从 c072 8000 - c072 9ffc	// 2.映射关系中有一个是固定的,那就是 虚拟地址(在 0xffeff000范围附近) , 虚拟地址通过 __fix_to_virt 获得	// 3.消费者必须在 enum fixed_addresses 结构体中.  	// 4.消费者同用 同一个 一级页表 (add : c0007ff8)	// 5.此时的消费者创建的映射关系是临时性的,消费者创建的映射关系会被销毁掉	// 6.对应 enum fixed_addresses 结构体 中的 temporaryc0700000 T __init_beginc0728000 t bm_pte 	// 1024 字节c0729000 T v6_cache_fnsc0800000 D __init_end 345 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]                              346     __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;// PTRS_PER_PTE  : 512// PTE_HWTABLE_PTRS : 512
  • 内存管理相关9 parse_early_param
early_param("earlycon", param_setup_earlycon);param_setup_earlycon	setup_earlycon		register_earlycon			// mapbase:7f005000			port->membase = earlycon_map(port->mapbase, 64);	// membase:ffeff000				set_fixmap_io(FIX_EARLYCON_MEM_BASE, paddr & PAGE_MASK); 					__set_fixmap						pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);						set_pte_at(NULL, vaddr, pte, pfn_pte(phys >> PAGE_SHIFT, prot));				base = (void __iomem *)__fix_to_virt(FIX_EARLYCON_MEM_BASE);				base += paddr & ~PAGE_MASK;											// addr 	of pte: c07283fc			// value 	of pte: 7f005653
  • 内存管理相关19 early_fixmap_shutdown
early_fixmap_shutdown	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); // va = ffeff000	pmd_clear(fixmap_pmd(va)); 		// 将 一级页表 c0007ff8 和 c0007ffc 中的内容清空		// 之前通过 一级页表 访问的 二级页表 不能访问了		// 即之前通过 early_fixmap 建立的 映射(例如earlycon中 uart 的映射),不能用了	// 如果 0 - __end_of_permanent_fixed_addresses(消费者) 还有映射关系在建立(*pte不为0)	// map.pfn:7f005,map.virtual:ffeff000,map.length:1000,map.type:0	// 标识了 物理地址 7f005 000 - 7f005 000 +1000	// 这次如果 不会成真// early_fixmap_shutdown 返回之后,devicemaps_init 会 填充一个page// map.pfn:7f005,map.virtual:f7005000,map.length:1000,map.type:0// 标识了 物理地址 7f005 000 - 7f005 000 +1000

map 类

其实是调用 create_mapping 在 0x50004000 - 0x50008000 写入了 pgd 和 ptecreate_mapping 的参数 md 的类型 struct map_desc  中的成员	virtual	: 虚拟地址	pfn		: 物理地址 去掉 低12位	length  : 长度	type	: 映射类型(该值被写入页表描述符/页目录表描述符)以下面的例子为例	md->virtual:c0000000	md->pfn:50000	md->length:100000	md->type:a此次创建的映射 为 	虚拟地址 c0000000 - c0000000+100000	物理地址 50000000 - 50000000+100000此次映射的pte 范围在 0xc0004000-0xc000741fpage table entry : 页表的地址
  • early_mm_init
pte 中的 值叫做 页表描述符页表描述符 	由 物理地址 7f005xxx 中的 7f005	和	其他控制位 ,例如 653	构成	构成为:7f005653	而这些控制位,是 根据 不同的控制需求 设置的, 这些控制位的组合 在 linux 看来,有17种 	// 定义在 arch/arm/include/asm/mach/map.h 和 arch/arm/include/asm/io.h 中	// 由 MT_ 开头	// 初始化 后 放在 全局变量 mem_types 中而 early_mm_init 就是 初始化 mem_types  的过程
  • prepare_page_table
清0 0xc0004000-0xc000741f之后 做映射关系的话,pte 就从 这个范围 取
  • map_lowmem
建立 物理地址 50000 000 - 50100 000 到 虚拟地址 c0000 000 - c0100 000建立 物理地址 50100 000 - 50800 000 到 虚拟地址 c0100 000 - c0800 000建立 物理地址 50800 000 - 60000 000 到 虚拟地址 c0800 000 - d0000 000
  • dma_contiguous_remap
null因为 dma_mmu_remap_num 等于 0 , 所以什么都不做
  • devicemaps_init
建立 物理地址 50000 000 - 50200 000 到 虚拟地址 ff800 000 - ffa00 000建立 物理地址 5fffe 000 - 5ffff 000 到 虚拟地址 ffff0 000 - ffff1 000建立 物理地址 5ffff 000 - 60000 000 到 虚拟地址 ffff1 000 - ffff2 000以下建立了 11 个 设备物理地址的映射 // map.pfn:7e00f,map.virtual:f6100000,map.length:1000,map.type:0 // S3C64XX_PA_SYSCON// map.pfn:70000,map.virtual:f6200000,map.length:1000,map.type:0 // S3C64XX_PA_SROM// map.pfn:7f005,map.virtual:f7005000,map.length:1000,map.type:0 // S3C_PA_UART// map.pfn:71200,map.virtual:f6000000,map.length:4000,map.type:0 // S3C64XX_PA_VIC0// map.pfn:71300,map.virtual:f6010000,map.length:4000,map.type:0 // S3C64XX_PA_VIC1// map.pfn:7f006,map.virtual:f6300000,map.length:4000,map.type:0 // S3C_PA_TIMER// map.pfn:7f008,map.virtual:f6500000,map.length:1000,map.type:0 // S3C64XX_PA_GPIO// map.pfn:74108,map.virtual:f6600000,map.length:1000,map.type:0 // S3C64XX_PA_MODEM// map.pfn:7e004,map.virtual:f6400000,map.length:1000,map.type:0 // S3C64XX_PA_WATCHDOG// map.pfn:7c100,map.virtual:f6700000,map.length:0400,map.type:0 // S3C64XX_PA_USB_HSPHY// map.pfn:77100,map.virtual:f7100000,map.length:4000,map.type:0 // S3C_PA_FB
  • kmap_init
做 fixmap 映射early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, _PAGE_KERNEL_TABLE); // c0007ff0 , ffc80000 , 0x11	arm_pte_alloc(pmd, addr, prot, early_alloc); // c0007ff0,ffc80000,0x11		if (pmd_none(*pmd)){
// c0007ff0 为空 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); // 申请了 pte , 其实地址在 cfff7000 // 大小为 1024 * sizeof(pte) __pmd_populate(pmd, __pa(pte), prot); // addr : c0007ff0 , value : 5fff7811 // addr : c0007ff4 , value : 5fff7c11 } return pte_offset_kernel(pmd, addr); // cfff7200// 建立了一级页表 , 位置在 c0007ff0 , 索引 二级页表 c0007ff0(wrong,cfff7200-cfff8000) // 一级页表表项已经填充,可索引 二级页表 c0007ff0 (wrong,cfff7200-cfff8000) // 二级页表表项还未填充,待消费者填充// 类似 early_fixmap_init// 1.二级页表的地址(pte)是固定的,从 cfff7200 - cfff9000 (一个pmd所以1K,两个索引2K)// 2.映射关系中有一个是固定的,那就是 虚拟地址(在 FIXADDR_STARTffc80000 - FIXADDR_ENDfff00000 范围内) , 虚拟地址通过 __fix_to_virt 获得// 3.消费者必须在 enum fixed_addresses 结构体中. // 4.消费者同用 同一个 一级页表 (add : c0007ff0)// 5.此时的消费者 不同于 early_fixmap_init 的消费者,此时的消费者创建的映射关系一直在,而不会被销毁(shutdown)// 6.对应 enum fixed_addresses 结构体 中的 permanent// 7.例如 用于 临时内核映射机制 的 FIX_KMAP_BEGIN FIX_KMAP_END其他 // 在 定义 CONFIG_HIGHMEM 的情况下 kmap_init pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), PKMAP_BASE, _PAGE_KERNEL_TABLE); // 永久内核映射,用于 从高端内存 alloc_pages 时 建立 内存映射 // 和 fixed_addresses 的 FIX_KMAP_BEGIN FIX_KMAP_END 没关系
  • tcm_init
// map.pfn:fffe8,map.virtual:fffe8000,map.length:4000,map.type:d// map.pfn:fffe0,map.virtual:fffe0000,map.length:4000,map.type:e

转载地址:http://rcigi.baihongyu.com/

你可能感兴趣的文章
DOM笔记(四):HTML 5 DOM复杂数据类型
查看>>
DOM笔记(五):JavaScript的常见事件和Ajax小结
查看>>
DOM笔记(六):怎么进行JQuery扩展?
查看>>
搜索和网页排名的数学原理
查看>>
DOM笔记(八):JavaScript执行环境和垃圾收集
查看>>
响应式下的下拉菜单
查看>>
DOM笔记(九):引用类型、基本包装类型和单体内置对象
查看>>
也谈学习
查看>>
DOM笔记(十):JavaScript正则表达式
查看>>
如何高效编写可维护代码?
查看>>
DOM笔记(十一):JavaScript对象的基本认识和创建
查看>>
DOM笔记(十二):又谈原型对象
查看>>
DOM笔记(十三):JavaScript的继承方式
查看>>
CSS:响应式下的折叠菜单(条纹式)
查看>>
响应式设计三部曲
查看>>
45种Javascript技巧大全
查看>>
PDO学习笔记
查看>>
MarkDown语法
查看>>
Linux的文件权限
查看>>
全屏滚动实现:fullPage.js和fullPage
查看>>